DPA-Switch

5 V, 70 W DC-DC Converter With Synchronous Rectification

Application	Device	Power Output	Input Voltage	Output Voltage	Topology
DC-DC Converter	DPA426RN	70 W	$36-75$ VAC	5 V	Forward

Design Highlights

- Extremely low component count
- High efficiency, 90% using synchronous rectification
- No current sense resistor or current transformer required
- Output overload, open loop and thermal protection
- Accurate input under/overvoltage meets ETSI standards
- 300 kHz switching frequency - optimizes efficiency using simple self-driven synchronous rectification

Operation

The 70 W converter shown in Figure 1 benefits from many of the DPA-Switch integrated features. In particular, no external current sense components are required. In a discrete implementation, an expensive current transformer and a number of additional components would increase the cost of this converter significantly.

R1 programs the input UV/OV thresholds. The tight tolerance of the UV/OV thresholds limits the range of gate drive voltages applied to MOSFETs Q1 to Q6, eliminating the need for gate voltage clamp circuitry. The self-driven synchronous rectification configuration is therefore very simple, with R4 to R6 filtering voltage spikes at the gates of Q1, Q2 and Q3 and D4 preventing the body diodes of Q4, Q5 and Q6 from conducting.

Capacitor C9, diodes D1-D2, and inductor L2 form a resonant snubber that recycles leakage and magnetizing energy stored in T1, and also helps to reset T1. Zener diode VR1 provides a hard voltage limit and only conducts during output transient and overload conditions. Capacitor C12 and Resistor R7 damp secondary switching spikes and help to reset T1.

Figure 1. DPA426 70 W, 5 V, 14 A DC-DC Converter.

Key Design Points

- For nominal undervoltage set point VUV: $\mathrm{R} 1=\left(\mathrm{V}_{\mathrm{UV}}-2.35 \mathrm{~V}\right) / 50 \mu \mathrm{~A} . \mathrm{V}_{\mathrm{oV}}=(\mathrm{R} 1 \times 135 \mu \mathrm{~A})+2.5 \mathrm{~V}$.
- Locate C10, C11, and R3 close to the U1 CONTROL pin, with ground connections returned to SOURCE pin.
- Minimize primary and secondary high current loop areas to reduce parasitic inductance.
- Optocoupler U2 should have a controlled CTR range of
- 100 to 200% for optimum loop stability.
- Size transformer reset components to ensure transformer reset at minimum operating voltage without exceeding.
- 170 V drain voltage at high line. It may be necessary to gap T1 to offset effect of Q4-Q6 gate capacitance.
- Set Zener VR1 clamp voltage to 150 V to both safely limit the DRAIN below $\mathrm{BV}_{\text {DSS }}$ and guarantee transformer reset.
- Select number of bias turns to provide 12 V to 14 V at minimum input voltage and full load.
- Main primary power return should be connected to the
- DPA-Switch tab, not to the SOURCE pin.
- Scale time constant of C9 and L2 to allow C9 to reset completely during minimum on-time conditions.
- Consult AN-31 for additional design tips and information.

Figure 2. Efficiency vs. Output Power.

Transformer Parameters

Core Material	EFD25, 3F3 or equivalent, gapped for $A_{L G}=1100 \mathrm{nH} / \mathrm{t}^{2}$
Bobbin	EFD25, 10 pin (B\&B B-025 or equivalent)
Winding Details	Bias: $5 \mathrm{~T}, 30 \mathrm{AWG}$ Primary: 6T $+5 \mathrm{~T}, 4 \times 26 \mathrm{AWG}$ Secondary: 3T, 0.005" Cu foil
Winding Order (pin numbers)	Primary (3-2), tape, Bias (4-5), tape, Secondary $(6,7-9,10)$, tape, Primary $(2-1)$, tape
Inductance	Primary: $130 \mu \mathrm{H}, \pm 10 \%$ Leakage: $10 \mu \mathrm{H}($ maximum $)$
Primary Resonant	3 MHz (minimum)
Frequency	

Table 1. Transformer Parameters. (AWG = American Wire Gauge, NC = No Connection)

Output Inductor Parameters

Core Material	EE22, TDK PC40 Material, gapped for $A_{L G}=250 \mathrm{nH} / \mathrm{t}^{2}$
Bobbin	TDK BE-22-5116
Winding Details	$4 \mathrm{~T}, 0.016 "$ Cu foil
Inductance	$4 \mu \mathrm{H}, \pm 10 \%$

[^0]
Power Integrations

5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1 408-414-9200
Customer Service
Phone: +1-408-414-9665
Fax: +1-408-414-9765
Email: usasales@powerint.com
On the Web
www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS makes no warranty herein and specifically disclaims all warranties including, without limitation, the implied WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. The products and applications illustrated herein (transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2002, Power Integrations, Inc.

[^0]: Table 1. Output Inductor Parameters.

